Apr 26, 2021

Coles partners with RELEX for AI retail optimisation

AI
Retail
supplychain
Digitaltransformation
William Smith
2 min
One of Australia’s leading retailers, Coles, has partnered with retail optimisation firm RELEX Solutions to bring AI to its operations
One of Australia’s leading retailers, Coles, has partnered with retail optimisation firm RELEX Solutions to bring AI to its operations...

One of Australia’s leading retailers, Coles, has partnered with retail optimisation firm RELEX Solutions to bring AI to its operations.

The partnership will involve supply chain and inventory planning across the retailers supermarkets and fresh produce distribution centres across Australia. 

AI-driven transformation

Coles’ Executive General Manager Central Operations and Transformation, Kevin Gunn, said: “Fresh produce presents many unique challenges compared to other parts of the grocery business: shorter shelf life, seasonality, price elasticity, along with the diverse and complex growing seasons and regions we are challenged with in Australia.”

“Using the RELEX solution to centralise the control of the replenishment model allows Coles to provide increased efficiency in one of our most complex supply chains and improve the customer experience through more targeted ranges, improved availability, fresher products, and simpler processes for our team members and our suppliers. The centralised ordering of fresh produce will also help to reduce waste on our existing range and minimise waste on new ranges, which is important to us as Coles aims to become Australia’s most sustainable supermarket.”

“An automated, cloud-based replenishment solution”

RELEX’s Living Retail Platform uses AI to drive operations such as demand forecasting, automatic replenishment, inventory planning and space optimisation. It also features workforce and promotion optimisation features.

Coles CIO Roger Sniezek said: “RELEX is a modern, automated, cloud-based replenishment solution provider to a number of leading grocers across Europe and the U.S. It represents a best-in-class technology solution that will deliver another major component of our technology-led strategy. The initiative forms part of Coles’ Easy Ordering program, which is a critical project in delivering on our Smarter Selling strategy.” 

“The new replenishment platform will integrate with Coles’ existing in-house advanced analytics smarter forecasting solution, which has already been rolled out to other non-fresh categories. This will enable an improved customer offer by not only taking into account past purchases, but also factoring weather and local community events into the forecasting algorithms.”

Share article

Jun 17, 2021

Facebook Develops AI to Crackdown on Deepfakes

Facebook
MSU
AI
Deepfakes
3 min
Social media giant, Facebook, has developed artificial intelligence that can supposedly identify and reverse-engineer deepfake images

In light of the large tidal wave of increasingly believable deepfake images and videos that have been hitting the feeds of every major social media and news outlet in recent years, global organisations have started to consider the risk factor behind them. While the majority of deepfakes are created purely for amusement, their increasing sophistication is leading to a very simple question: What happens when a deepfake is produced not for amusement, but for malicious intent on a grander scale? 

 

Yesterday, Facebook revealed that it was also concerned by that very question and that it had decided to take a stand against deepfakes. In partnership with Michigan State University, the social media giant presented “a research method of detecting and attributing deepfakes that relies on reverse engineering from a single AI-generated image to the generative model used to produce it.” 

 

The promise is that Facebook’s method will facilitate deepfake detection and tracing in real-world settings, where the deepfake image itself is often the only information detectors have to work with. 

Why Reverse Engineering? 

Right now, researchers identify deepfakes through two primary methods: detection, which distinguishes between real and deepfake images, and image attribution, which identifies whether the image was generated using one of the AI’s training models. But generative photo techniques have advanced in scale and sophistication over the past few years, and the old strategies are no longer sufficient. 

 

First, there are only so many images presented in AI training. If the deepfake was generated by an unknown, alternative model, even artificial intelligence won’t be able to spot it—at least, until now. Reverse engineering, common practice in machine learning (ML), can uncover unique patterns left by the generating model, regardless of whether it was included in the AI’s training set. This helps discover coordinated deepfake attacks or other instances in which multiple deepfakes come from the same source. 

 

How It Works 

Before we could use deep learning to generate images, criminals and other ill-intentioned actors had a limited amount of options. Cameras only had so many tools at their disposal, and most researchers could easily identify certain makes and models. But deep learning has ushered in an age of endless options, and as a result, it’s grown increasingly difficult to identify deepfakes.

 

To counteract this, Facebook ran deepfakes through a fingerprint estimation network (FEN) to estimate some of their details. Fingerprints are essentially patterns left on an image due to manufacturing imperfections, and they help identify where the image came from. By evaluating the fingerprint magnitude, repetition frequency, and symmetrical frequency, Facebook then applied those constraints to predict the model’s hyperparameters. 

 

What are hyperparameters? If you imagine a generative model as a car, hyperparameters are similar to the engine components: certain properties that distinguish your fancy automobile from others on the market. ‘Our reverse engineering technique is somewhat like recognising [the engine] components of a car based on how it sounds’, Facebook explained, ‘even if this is a new car we’ve never heard of before’. 

 

What Did They Find? 

‘On standard benchmarks, we get state-of-the-art results’, said Facebook research lead Tal Hassner. Facebook added that the fingerprint estimation network (FEN) method can be used for not only model parsing, but detection and image attribution. While this research is the first of its kind, making it difficult to assess the results, the future looks promising. 


Facebook’s AI will introduce model parsing for real-world applications, increasing our understanding of deepfake detection. As cybersecurity attacks proliferate, and generative AI falls into the hands of those who would do us harm, this method could help the ‘good guys’ stay one step ahead. As Hassner explained: ‘This is a cat-and-mouse game, and it continues to be a cat-and-mouse game’.

Share article