What is neuromorphic AI?

Neuromorphic computing – or neuromorphic AI – is the hardware side of artificial intelligence, changing the rules for the future of machine learning

AI is dead. Long live AI?

 

AI is evolving. The first generation of machine learning used ordinary logic and rules to draw conclusions in a very specific manner. A good example would be IBM’s Deep Blue computer, which was trained to play chess to championship standard. That hasn’t disappeared, but it has been augmented by more perceptive deep learning networks that can analyze a broader set of parameters and provide intelligent insights.

 

And neuromorphic AI is next?

 

Correct. Neuromorphic computing is a way of designing hardware – microprocessors, really – to work more like human brains. The idea is that this new iteration of AI hardware will allow machine learning of the future to deal better with ambiguity and contradiction, things that are currently difficult to process for computers.

 

How does neuromorphic AI work?

 

The problem with current chip architecture is that it is not very efficient. Because of the linearity of the process, the chips have to built with a massive amount of horsepower just in case it’s needed. Building a human brain that way would be unfeasible, so engineers have had to rethink the nature of chip design in their quest to get computers to perform more of the tasks human brains are good at. Enter SNNs.

 

What’s an SNN?

 

A spiking neural network (SNN) is, in the words of chipmaker Intel, “a novel model for arranging those elements to emulate natural neural networks that exist in biological brains.” Each ‘neuron’ fires independently, triggering other neurons only when they are required. Intel again: “By encoding information within the signals themselves and their timing, SNNs simulate natural learning processes by dynamically remapping the synapses between artificial neurons in response to stimuli.”

Share

Featured Articles

Google DeepMind launches deep learning tool: GNoME

GNoME highlights the potential of using AI to discover and develop new materials at scale and offers promise to develop future transformative technologies

Overseeing safe and responsible AI in 2024 with Dynatrace

Bernd Greifeneder, Founder & CTO of Dynatrace, offers AI insights for next year about how businesses can prepare for the positives, as well as the risks

Microsoft to invest £2.5 billion into global AI development

The tech giant has announced a £2.5bn investment into the UK to build AI infrastructure, with the hope of building more data centres and GPUs

IBM & Boehringer Ingelheim partner to advance health GenAI

Machine Learning

ChatGPT one year on: adoption, transformation, regulation

Machine Learning

IBM continues to address climate change via geospatial AI

AI Strategy