Sep 22, 2020

Analytics modelling and the COVID-19 crisis

Joanna England
5 min
According to a new study, analytics modelling has been rocked off its axis by the recent pandemic. We look at ways in which companies can right the balance
According to a new study, analytics modelling has been rocked off its axis by the recent pandemic. We look at ways in which companies can right the bala...

Using data and insights to predict customer behaviour and market stability, has, for many years been common practice in the global business world. But the pandemic has wrought havoc with AI platforms that previously did an excellent job of predicting the future. The reason for this, a McKinsey study reports, has been the extraordinary behaviours that have affected the market. For example, huge demands for sanitization products, far less demands for retail clothing and petrol, consumers wanting far greater access to broadband services and so on. 

The usual trends analytical modelling and forecast software tracks, have essentially gone haywire. Systems that relied on predictable patterns to predict future trends, have been thrown entirely off course. 

New analytical modelling

Some companies are already looking at new ways to analyse data so that they can start working with predictive modelling based on the current, unusual climate. In data collected from the McKinsey study, analysts found that businesses most likely to succeed would be those that; identify the most critical analytics systems, and then perform a layered model-triage process that concentrates on analytics from those critical systems.

Ultimately though, creating new models that can successfully produce predictive trends, would be the best outcome. 

Building a new model

The more complicated a model is, the less transparent it becomes. According to McKinsey, “In cases where the simplest possible model is a complex one, explainability tools can make opaque models more transparent to reduce risk and enable humans to incorporate their expertise and judgment to address highly volatile elements.”

Then there are also issues related to which data should be used and analysed, which features are ranked – and why, and what assumptions were made during the model-build in the first place. For example, one company cited in the study, was an energy business that used a model which couldn’t predict data if the products (oil and gas) were places in negative values. 

Fixing the data source problem

While building new models helps companies and organizations in the long-term, businesses need accurate data now. There are several ways they can access information that will give them greater predictability, and using new or previously unused internal data sources, is one of them. Examining web page navigation and mobile app usage, as well as transaction data, might provide a much clearer picture of customer behaviour, rather than the more traditionally used credit scores. 

Current data, used differently

An example of this would be to see if your current data, might also offer insights into other customer trends and social behaviour. The McKinsey study cites an engine manufacturer, which used telematic data previously used to support maintenance work, to instead, predict and model traffic patterns as cites re-opened from lockdown.

Collect data more frequently

Sometimes, far more accurate trends are spotted when data is collected more frequently. For example, if information is collected once a week, one conclusion could be drawn. But collecting data daily, will very possibly show different information.

Use external data sources

Investigating open-source analytics such as those found in public health and specific locations, could be used to predict the behaviour of the workforce and therefore, supply chain difficulties and so on. However, this could prove costly as it may necessitate the buying of data. 

Agility and predictive data

One aspect of business management that has lent itself well to flexible data acquisition, is agility. Agile companies tend to advocate for faster decision-making. Therefore, the matter of data collection and analytics has been handled better within these organisations. 

The faster a company can respond to a shift in market patterns, the better the outcome for them. McKinsey references a telecommunications company as an example, saying: “One telecommunications provider uses agile practices to deploy analytics-driven micro-campaigns daily, evaluates the results immediately, and then fine-tunes campaigns the following day. This rapid-fire approach recently helped the company recognize quickly that one of the models informing the campaigns was not accounting for the spike in remote working. By updating its algorithmic models to account for this shift, it better predicted and responded to the need for additional products, including personal Wi-Fi hotspots—a product area for which it began capturing greater market share.”

Create a digital nerve centre

An ERP that tracks the data of every transaction, order, supply chain, inventory and so on, requires a team to monitor all changes and new trends. Organise a dynamic group that focuses entirely on the new market data. 

Embrace real-time data

Make sure the modelling system you employ has access to data in real time. With trends and global situations changing so frequently, it’s imperative to know exactly what changes are happening and when. The faster you notice the trends change, the faster you can respond to them.

Welcome agility

Restructuring your organisation and embracing an agile approach, has been proven to assist businesses in these challenging times. This is because agility enables a company to respond much faster to market changes and demands. 

Change with the world

The term, ‘the new normal’ is now one we must accept and respond positively to. Eventually, stability will be achieved. But until then, businesses must strive to achieve success against extraordinary odds. McKinsey states that when companies embrace; “interdisciplinary teams that include gender, ethnic, cultural, and geographical diversity, along with a diverse set of roles and perspectives, to develop new analytics capabilities for the business,” they are far better placed to survive in a post-COVID-19 environment.

Share article

Jun 17, 2021

Chinese Firm Taigusys Launches Emotion-Recognition System

Elise Leise
3 min
Critics claim that new AI emotion-recognition platforms like Taigusys could infringe on Chinese citizens’ rights

In a detailed investigative report, the Guardian reported that Chinese tech company Taigusys can now monitor facial expressions. The company claims that it can track fake smiles, chart genuine emotions, and help police curtail security threats. ‘Ordinary people here in China aren’t happy about this technology, but they have no choice. If the police say there have to be cameras in a community, people will just have to live with it’, said Chen Wei, company founder and chairman. ‘There’s always that demand, and we’re here to fulfil it’. 


Who Will Use the Data? 

As of right now, the emotion-recognition market is supposed to be worth US$36bn by 2023—which hints at rapid global adoption. Taigusys counts Huawei, China Mobile, China Unicom, and PetroChina among its 36 clients, but none of them has yet revealed if they’ve purchased the new AI. In addition, Taigusys will likely implement the technology in Chinese prisons, schools, and nursing homes.


It’s not likely that emotion-recognition AI will stay within the realm of private enterprise. President Xi Jinping has promoted ‘positive energy’ among citizens and intimated that negative expressions are no good for a healthy society. If the Chinese central government continues to gain control over private companies’ tech data, national officials could use emotional data for ideological purposes—and target ‘unhappy’ or ‘suspicious’ citizens. 


How Does It Work? 

Taigusys’s AI will track facial muscle movements, body motions, and other biometric data to infer how a person is feeling, collecting massive amounts of personal data for machine learning purposes. If an individual displays too much negative emotion, the platform can recommend him or her for what’s termed ‘emotional support’—and what may end up being much worse. 


Can We Really Detect Human Emotions? 

This is still up for debate, but many critics say no. Psychologists still debate whether human emotions can be separated into basic emotions such as fear, joy, and surprise across cultures or whether something more complex is at stake. Many claim that AI emotion-reading technology is not only unethical but inaccurate since facial expressions don’t necessarily indicate someone’s true emotional state. 


In addition, Taigusys’s facial tracking system could promote racial bias. One of the company’s systems classes faces as ‘yellow, white, or black’; another distinguishes between Uyghur and Han Chinese; and sometimes, the technology picks up certain ethnic features better than others. 


Is China the Only One? 

Not a chance. Other countries have also tried to decode and use emotions. In 2007, the U.S. Transportation Security Administration (TSA) launched a heavily contested training programme (SPOT) that taught airport personnel to monitor passengers for signs of stress, deception, and fear. But China as a nation rarely discusses bias, and as a result, its AI-based discrimination could be more dangerous. 


‘That Chinese conceptions of race are going to be built into technology and exported to other parts of the world is troubling, particularly since there isn’t the kind of critical discourse [about racism and ethnicity in China] that we’re having in the United States’, said Shazeda Ahmed, an AI researcher at New York University (NYU)


Taigusys’s founder points out, on the other hand, that its system can help prevent tragic violence, citing a 2020 stabbing of 41 people in Guangxi Province. Yet top academics remain unconvinced. As Sandra Wachter, associate professor and senior research fellow at the University of Oxford’s Internet Institute, said: ‘[If this continues], we will see a clash with fundamental human rights, such as free expression and the right to privacy’. 


Share article