Nvidia AI analyses satellite data for climate research

By William Smith
Nvidia’s DGX enterprise AI systems are being used to process observation data via deep learning, in order to reveal valuable data regarding climate ch...

The scale of the climate change problem can be paralysing, sometimes seeming too large for our human brains to comprehend.

It’s lucky, then, that we are facing this unprecedented challenge at the same time as artificial intelligence technology is booming.

Nvidia AI technology has been employed by the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS), part of the United Kingdom’s Natural Environment Research Council, which makes satellite observation data available to researchers.

Nvidia’s DGX enterprise AI systems, which feature optimised software and are built with scalability in mind, are being used to process said observation data via deep learning, in order to reveal valuable data regarding climate change.

The DGX systems make up the MAGEO computing cluster. “MAGEO offers an excellent opportunity to accelerate artificial intelligence and environmental intelligence research,” said Stephen Goult, a data scientist at Plymouth Marine Laboratory. “Its proximity to the NEODAAS archive allows for rapid prototyping and training using large amounts of satellite data, which will ultimately transform how we use and understand Earth observation data.”

The ongoing project has already had successes, including the development of a chlorophyll detector that can monitor the concentration of phytoplankton in the Earth’s oceans. The part of phytoplankton is a lesser known climate change concern, with the plants playing a vital role in transferring carbon dioxide out of the atmosphere and into the ocean. Using a neural network, researchers can now uses data regarding the loss of energy from light in seawater to calculate the presence of chlorophyll.

“Thanks to the highly parallel environment and the computational performance driven by NVIDIA NVLink and the Tensor Core architecture in the NVIDIA DGX systems, what would have taken 16 months on a single GPU took 10 days on MAGEO,” said Sebastian Graban, industrial placement student at Plymouth Marine Laboratory. “The resulting trained neural network can predict chlorophyll to a very high accuracy and will provide experts with an improved, faster method of monitoring phytoplankton.”

Share

Featured Articles

Should Tech Leaders be Concerned About the Power of AI?

With insights from Blackstone CEO Steve Schwarzman, we consider if tech leaders are right to be anxious about AI innovation and if regulation is necessary

Andrew Ng Joins Amazon Board to Support Enterprise AI

In the wake of Andrew Ng being appointed Amazon's Board of Directors, we consider his career from education towards artificial general intelligence (AGI)

GPT-4 Turbo: OpenAI Enhances ChatGPT AI Model for Developers

OpenAI announces updates for its GPT-4 Turbo model to improve efficiencies for AI developers and to remain competitive in a changing business landscape

Meta Launches AI Tools to Protect Against Online Image Abuse

AI Applications

Microsoft in Japan: Investing in AI Skills to Boost Future

Cloud & Infrastructure

Microsoft to Open New Hub to Advance State-of-the-Art AI

AI Strategy